I.

1. Consider the integral \(\int_1^5 x^2 + 1 \, dx \) Evaluate the integral by dividing the interval into 4 equal subintervals and approximate the integral by a sum.

2. For \(f(x) = \cos(x) \) on \([0, \frac{\pi}{2}]\), dividing the interval into 4 equal subintervals and approximate the integral by a sum.

3. Given that \(f'(x) = 3x - 4 \) and that \(f(0) = 3 \). Find \(f(x) \).

4. Find the solution of \(y' = 2x + 3 \) satisfying \(y = 2 \) when \(x = 0 \)

II. Integrate each of the following:

5. \(\int_2^3 \frac{2}{(x)^2} \, dx \) is:

6. \(\int (4x^2 - 2)^{4} 8x \, dx \) is:

7. \(\int \frac{x^3 + 6}{x} \, dx \).
 Hint: divide out.

8. \(\int_1^6 \sqrt{x} \, dx \)

9. \(\int \frac{dx}{(x+4)^2} \)

10. \(\int_3^1 x \sqrt{x^2 - 1} \, dx \)

11. \(\int_0^\frac{1}{3} \cos(\pi x) \, dx \)

12. \(\int \sin^2(x) \cos(x) \, dx \)

13. \(\int \frac{x^3 + 7x^2 + 5}{x^2} \, dx \)

14. \(\int_0^1 \frac{3x}{\sqrt{(0x^2+1)}} \, dx \)

15. \(D_x \int_0^x \sqrt{t^2 + 1} \, dt \)

16. \(D_x \int_0^{\sin(x)} \sqrt{t^4 + 1} \, dt \)

III.

17. Find the area bounded by the \(y - \text{axis} \), and \(y = x^2 - 1 \) and \(x - \text{axis} \).

18. The area of the region bounded by the graphs of \(y = \sqrt{x}, \ x = 0 \), and \(y = 2 \).

19. Find the area bounded by the curves \(y = 4x \) and \(y = x^2 - 1 \) and the \(y\)-axis.

20. A ball is thrown vertically into the air from a height of 160 feet above the ground and with an initial velocity of 48 ft/sec. Find the details of this flight. e.g. max ht, speed upon impact.

WE MAY NOT GET THIS FAR

21. The volume of the solid generated by revolving about the \(x\)-axis the region bounded by the graphs of \(y = x \), \(y = 0 \), and \(x = 2 \) is described by

22. Find the volume of the solid generated by revolving about the \(y\)-axis the region bounded by the graphs of \(y = x^2 \) and \(y = 2x \).