I. Sketch each of the following graphs in polar coordinates and SET UP the integral that finds the arc length:

(for partial credit graph in rectangular coordinates.)

- 1. $r = 4 2\sin\theta$
- 2. $r^2 = 4\cos 2\theta$
 - II. Sketch the graphs of the curves described by the partametric equations and find a Cartesian equation describing each curve, find arc lenghts, areas and surface areas.
- 3. $x = 3\sin t$, $y = \cos^2 t$
 - III. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for each of the following :
- 4. $x = 3\sin t$, $y = \cos^2 t$
- 5. $x = 1 + \sin t, y = \cos t$
 - IV. Graph the indicated region and find the areas of each of the following:
- 6. The region bounded by $r = 1 + \cos(\theta)$ and $r = 1 \cos(\theta)$
- 7. The region bounded by $r = \sin(\theta)$ and $r = \cos(\theta)$
- 8. The region bounded by $r = 2 + 2\sin(\theta)$ and r = 2
 - V. Graph the indicated region and find the tangent at that point and find an expression for the arclength, area and surface area of each of the following:
- 9. The curve $x = \sqrt{2}\cos(t), y = \sqrt{2}\sin(t)$ for t from $0...\pi$. Find the equation of the tangent line at the point t = 1
- 10. The curve $x = 4 * t^2$, $y = 3 * t^2 + 5$ for t from 0...2. Find the equation of the tangent line at the point t = 1

Math 1572

Calculus II : Exam 2

4/10/2008

- I. Sketch each of the following graphs in polar coordinates: (for partial credit graph in rectangular coordinates.)
 - 1. $r = 2 \sin \theta$

- 2. $r = 2\cos\theta$
 - II. Sketch the graphs of the curves described by the parametric equations and find a Cartesian equation describing each curve. (2 parts)
- 3. $x = \sin^2 t$, $y = \cos t$ for $0 \le t \le 2\pi$
 - III. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for the following :
- 4. $x = 3\sin t$, $y = \cos^2 t$
 - IV. Graph the indicated region and find the areas of each of the following: (2 parts)
- 5. The region bounded by

$$r = \sin(\theta)$$
 and $r = \cos(\theta)$

- 6. The region bounded by $r = 2\sin(\theta)$ and r = 1
 - V. Graph the indicated region and find the tangent at that point and find an expression for the arclength area and surface area of each of the following:
- 7. The curve $x = \cos t$, $y = \sin^2 t$) for t from $0...\pi/2$ (find arclength) Find the equation of the tangent line at the point $t = \pi/4$