with(VectorCalculus);
SetCoordinates('cartesian'[x, y, z]);
LineInt(VectorField(<y-x^2,z-y^2,x-z^2>), Path(<t,t^2,t^3>, t=0..1), inert) = LineInt(VectorField(<y-x^2,z-y^2,x-z^2>), Path(<t,t^2,t^3>, t=0..1));
Warning, the assigned names `<,>` and `|>` now have a global binding
Warning, these protected names have been redefined and unprotected:
`*`, `+`, ` `, ` `, ` `, D, Vector, diff, int, limit, series
`&x, *, +, -, <, >, |>, AddCoordinates, ArcLength, BasisFormat, Binormal, CrossProd,
CrossProduct, Curl, Curvature, D, Del, DirectionalDiff, Divergence, DotProd, DotProduct,
Flux, GetCoordinateParameters, GetCoordinates, Gradient, Hessian, Jacobian, Laplacian,
LineInt, MapToBasis, Nabla, Norm, Normalize, PathInt, PrincipalNormal, RadiusOfCurvature,
ScalarPotential, SetCoordinateParameters, SetCoordinates, SurfaceInt, TNBFrame, Tangent,
TangentLine, TangentPlane, TangentVector, Torsion, Vector, VectorField, VectorPotential,
Wronskian, diff, evalVF, int, limit, series

\[
cartesian_{x, y, z} = \int_{0}^{1} 2 \left(t^3 - t^4 \right) t + 3 \left(t - t^5 \right) t^2 \ dt = \frac{29}{60}
\]