2. If \(u = x^y \), show that
\[
\frac{x \partial u}{y \partial x} + \frac{1}{\ln x} \frac{\partial u}{\partial y} = 2u
\]

3. Find the maximum rate of change of \(f(x, y) = x^2y + \sqrt{y} \) at the point \((2,1)\). In which direction does this max occur?

4. Find the local maximum and minimum values and saddle points of the given function.
\[
f(x, y) = 3xy - x^2y - xy^2
\]

5. If \(z = \cos(xy) + y \cos(x) \), where \(x = u^2 + v \) and \(y = u - v^2 \), use the Chain Rule to find \(\frac{\partial z}{\partial u} \) and \(\frac{\partial^2 z}{\partial u^2} \)

1.) Graph the region and find the volume inside both the sphere \(x^2 + y^2 + z^2 = 4 \) and exterior to the sphere \(x^2 + y^2 + z^2 = 1 \).

2.) Graph the region and find the volume bounded by the cone whose angle in spherical coordinates is given by \(\phi = \frac{\pi}{4} \) and a sphere of radius 2.

II

3.) Verify Green’s Theorem for \(\int_C (x - y)dx + (x + y)dy \) where \(C \) is in the counterclockwise direction about the triangle with vertices at \((0,0), (0,1), (1,0)\).

4.) Integrate \(f(x, y) = x + y \) over the curve formed by \(C_1 \) and \(C_2 \)

\(C_1 : \) line segment between \((0,0)\)to\((1,1)\) and

\(C_2 : \) line segment between \((1,1)\)to\((2,3)\)

5.) Let \(F(x, y) = yi + xj \) be a continuous velocity field and consider the closed path \(\gamma \) given by the \(r(t) \) which is the union of the arch \(r_1(t) = \cos(t)i + \sin(t)j, 0 \leq t \leq \pi \)

followed by the line segment \(r_2(t) \) \((-1,0), \) and \((1,0)\)

Find the \(\int_\gamma F(x, y)dr \)
III.)

6.) Find \(f(x, y, z) \) such that \(\nabla f = F \) for each of the following:

a.) \(F(x, y, z) = (yz, xz, xy) \)

7.) For \(F(x, y, z) = \sin(x)i + \sin(y)j + xz^2k \)

a.) Find \(\nabla (\nabla \cdot F) \)

b.) Find \(\nabla \times (\nabla \times F) \)

2.) Find the volume of the solid in the first octant bounded by the plane \(x + 2y + z = 4 \).

3.) Find the volume inside the paraboloid \(z = (x^2 + y^2) \) and below the plane \(z = 1 \).

5.) Find the volume inside both the sphere \(x^2 + y^2 + z^2 = 2 \) and the paraboloid \(z = x^2 + y^2 \).

7.) The solid in the first octant volume bounded by the cylinder \(z^2 + y^2 = 9 \) and \(z = x^2 + 3y^2 \)

8. If \(\Omega \) = the triangle whose vertices are: \((0, 0), (1, 0), (1, 1)\) and \(\gamma \) the boundary of \(\Omega \).

Set \(M(x, y) = -ye^x \) and \(N(x, y) = xe^y \)

Verify Green’s Theorem

11.) Evaluate \(\int_C (x-y)dx + (x+y)dy \) where \(C \) is the unit square with vertices at \((0, 0), (0, 1), (1, 0), (1, 1)\)