Draw a line segment AB and find a point on the line say M (x, y, z) from the 3o to 8 vector.

Then compute (x - x_0) mod (y, z) and the line number \[\lfloor \frac{y}{\text{gcd}(y, z)} \rfloor \]
\[\lfloor \frac{z}{\text{gcd}(y, z)} \rfloor \]

Distance: \[\text{modDist}(\text{point}(3, 8), \text{vector}(0, 0, 1)) \]
\[\text{vector}(0, 0, 1) \]

Distance = \[\text{modDist}(\text{point}(3, 8), \text{vector}(0, 0, 1)) \]
\[\text{vector}(0, 0, 1) \]

Distance = \[\text{modDist}(\text{point}(3, 8), \text{vector}(0, 0, 1)) \]
\[\text{vector}(0, 0, 1) \]

Distance = \[\text{modDist}(\text{point}(3, 8), \text{vector}(0, 0, 1)) \]
\[\text{vector}(0, 0, 1) \]
The distance between two vectors \(\mathbf{a} \) and \(\mathbf{b} \) can be found using the formula:

\[
|\mathbf{a} - \mathbf{b}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}
\]

where \(\mathbf{a} = (x_1, y_1, z_1) \) and \(\mathbf{b} = (x_2, y_2, z_2) \) are the coordinates of the vectors.

For example, if \(\mathbf{a} = (1, 2, 3) \) and \(\mathbf{b} = (4, 5, 6) \), then the distance is:

\[
|\mathbf{a} - \mathbf{b}| = \sqrt{(4 - 1)^2 + (5 - 2)^2 + (6 - 3)^2} = \sqrt{9 + 9 + 9} = \sqrt{27} = 3\sqrt{3}
\]

This distance can be used to determine the distance between two points in space.
\[x^2 + y^2 - 9 = 0, \quad x = -3.3, \quad y = -3.3, \quad z = -3.3, \quad \text{color = red, axes = boxed}; \]

\[x^2 + y^2 + z^2 = 4, \quad x = 1.5, \quad y = 1.5, \quad z = 3.3, \quad \text{color = red, axes = boxed}; \]