> restart; with(linalg);
Warning, the protected names norm and trace have been redefined and unprotected

Ex1
> U := transpose(matrix([[2, 3, 2], [7, 10, 6], [6, 10, 7]]));

U :=

\[
\begin{bmatrix}
2 & 7 & 6 \\
3 & 10 & 10 \\
2 & 6 & 7
\end{bmatrix}
\]

a.) Prove that the columns of U form a basis for \(\mathbb{R}^3 \)

b.) Let \(\mathbf{w} \) be a vector in \(\mathbb{R}^3 \) whose coordinates with respect to the U basis is \([3, 5, 6]\)

b1.) Find the coordinates of \(\mathbf{w} \) with respect to the standard basis.

c.) Let \(\mathbf{w} \) be a vector in \(\mathbb{R}^3 \) whose coordinates with respect to the standard basis is \([3, 5, 6]\).

Find the coordinates of \(\mathbf{w} \) with respect to the U basis.
> wU := vector([[3, 5, 6]]);

wU := [3, 5, 6]

Ex2
Consider the space \(P_2 = \{ ax^2 + bx + c \mid a, b, c \in \mathbb{R} \}, \) polynomials of degree 2.

Let us consider two basis for \(P_2 \)

Natural basis \(N = \{ x^2, x, 1 \} \) and the \(H = \{ x^2 - 3x + 2, x^2 - 2x, x^2 - x \} \)

a.) Prove that \(N \) and \(H \) form a basis for \(P_2 \)

b.) Find the coordinates of elements of \(H \) with respect to the \(N \) basis

c.) Find the coordinates of elements of \(N \) with respect to the \(H \) basis

d.) Let \(\mathbf{w} \) be a vector in \(P_2 \) whose coordinates with respect to the \(H \) basis is \([12, -11, 5]\)

d1.) Find the coordinates of \(\mathbf{w} \) with respect to the \(N \) basis.

e.) Let \(\mathbf{w} \) be a vector in \(P_2 \) whose coordinates with respect to the \(N \) basis is \([12, -11, 5]\)

e1.) Find the coordinates of \(\mathbf{w} \) with respect to the \(H \) basis.

Ex3
> A := (matrix([[17, 12, 18], [-16, -9, -24], [-5, -4, -4]])); C :=

transpose(matrix([[10, -8, -3], [-3, 3, 1], [-3, 2, 1]]));

A :=

\[
\begin{bmatrix}
17 & 12 & 18 \\
-16 & -9 & -24 \\
-5 & -4 & -4
\end{bmatrix}
\]

C :=

\[
\begin{bmatrix}
10 & -3 & -3 \\
-8 & 3 & 2 \\
-3 & 1 & 1
\end{bmatrix}
\]
a.) Now A is represented with respect to the standard basis and the columns of C form a basis for \mathbb{R}^3 (given). Find a matrix representation of A with respect to the C basis.