1a.) Two distinct vectors \(x_1 \) and \(x_2 \) are solutions to \(Ax = b \). Prove that \(N(A) \) is non-zero.

1b.) Let \(B \) be a basis for \(\mathbb{R}^n \). Prove the following:
 i.) \(B \) does not contain the zero vector.
 ii.) Any proper subset of \(B \) is NOT a basis.
 iii.) No vector in \(B \) is a linear combination of the other vectors in \(B \).

1c.) If \(A \) is a 3x3 matrix such that

\[
\begin{pmatrix}
0 \\
1 \\
2
\end{pmatrix} = \begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix} \quad \text{and} \quad
\begin{pmatrix}
3 \\
4 \\
5
\end{pmatrix} = \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}
\]

then find \(A \begin{pmatrix}
6 \\
7 \\
8
\end{pmatrix} \).

2a.) The solution to

\[
ax + ay - z = 1 \\
x - ay - az = -1 \\
ax - y + az = 1
\]

is \((x, y, z) = (a, b, a)\) Find \(a + b \).

2b.) Describe the values for \(k \) for which the following system have no, unique or infinite number of solutions.

\[
kx + y + z = 1 \\
x + ky + z = k \\
x + y + kz = k^2.
\]

2c.) Consider the system

\[
x + y + z = 0 \\
x + 2y + 3z = 0 \\
x + 3y + bz = 0
\]

where \(b \) is a constant. Find the value of \(b \) such that:
 i.) the system has a unique solution.
 ii.) the system has more than one solution.
 iii.) the system has NO solution.

3.) Let \(A, B, C \) be 2x2 matrices and \(O \) the zero matrix:

Prove or disprove:
 i.) If \(A^2 = O \) then \(A = O \).
 ii.) If \(AB = AC \) then \(B = C \).
 iii.) If \(A \) is invertible and \(A = A^{-1} \) then either \(A = I \) or \(A = -I \).

4.) Find \(a, b, c \) such that

\[
\begin{pmatrix}
3 & -2 & -2 \\
-1 & 1 & 1 \\
3 & -1 & 1
\end{pmatrix}
\]

is the inverse of

\[
\begin{pmatrix}
1 & a & 0 \\
-1 & b & 1 \\
2 & c & -1
\end{pmatrix}.
\]
5.) Find k such that the vectors v_1, v_2, v_3 form a basis for R^3 where $v_1 = (-1,1,1), v_2 = (1,1,1)$ and $v_3 = (1,-1,k)$.

6.) Find the row rank, column rank and determinant for the following matrix:

$$\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}.$$

ii. Define the function $f : R^3 \rightarrow R^3$ by $f(x) = A \times x$. What is the range of f in R^3.

7.) Find the values of k for which the following matrix is invertible:

$$\begin{pmatrix}
7 & 6 & 0 \\
5 & 4 & x \\
8 & 7 & 0
\end{pmatrix}.$$

8.) Find k for which $b = (12,11,k)$ is in the range of

$$\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}.$$

9. Find the dimension in R^4 of the subspace spanned by

$\{ (1,-1,0,1), (-2,1,1,1), (-1,0,1,2), (1,1,-2,-5) \}$.

10.) Describe the collection of points in R^2 which satisfy $Ax = 0$ where A is the following:

$$\begin{pmatrix}
x & y & 1 \\
0 & y & l \\
0 & y & 1
\end{pmatrix}.$$

11.) Prove the collection of real symmetric matrices are a subspace of M_{3x3}.

12.) Let $T : R^2 \rightarrow R^2$ be a linear transformation such that $T(1,2) = (-1,1)$ and $T(0,-1) = (2,-1)$.
 i.) Find a matrix which represents T.
 ii.) Find $T(1,1)$.

13.) Let $T : R^2 \rightarrow R^2$ be a linear transformation such that $T(1,2) = (2,3)$ and $T(-1,2) = (2,-3)$.
 i.) Find a matrix which represents T.
 ii.) Find $T(2,1)$.

14.) Let $T,S : R^2 \rightarrow R^2$ be the respectively operators that rotate each vector counterclockwise 90° and reflects each vector through the $y-axis$.
 i.) Find $T \circ S$.

2
ii.) Find $S \circ T$.

iii.) Find the matrices which represents T and S with respect to the standard basis.

15.) Find the eigenvalues of the matrix

$$
\begin{pmatrix}
2 & b \\
3 & -1
\end{pmatrix}.
$$

i. If the eigen values are -4 and $b - 1$, find b.

16.) Find the eigenvalues and normalized eigenvectors p_1, p_2 of the matrix

$$
\begin{pmatrix}
2 & 1 \\
1 & 2
\end{pmatrix}.
$$

i. orthogonally diagonalize A.

17.) If A is an nxn invertible matrix. Prove the if λ is an eigenvalue of A then λ^{-1} is an eigenvalue of A^{-1}.

18.) If A is an nxn matrix with eigenvector v.

i.) v is an eigenvector of $2A$.

ii.) v is an eigenvector of A^2.

iii.) v is an eigenvector of A^{-1}.

19.) Let w be an $n - vector$ and $A = w \ast w^\top$.

i.) Prove that A is symmetric.

ii.) Prove that A has an eigenvalue equal to $w^\top \ast w$ with eigenvector w.

iii.) Prove that the remaining $n - 1$ eigenvalues are 0 and span w^\perp.