1. i.) Find a finite collection T (as small as possible) of 4×4 nilpotent matrices so that any nilpotent 4×4 with complex entries is similar to one of the matrices in the collection T. Justify.

ii.) Find two 7×7 nilpotent matrices with the same minimal polynomial Z^3 and same nullity (dim of kernel) but not similar. Justify.

2.) Let

$$A = \begin{pmatrix} 4 & 4 & -2 \\ 1 & 4 & -1 \\ 4 & 8 & -2 \end{pmatrix}.$$

i.) Find the characteristic polynomial of A.

ii.) Find the minimal polynomial of A.

iii.) Compute the matrix exponential e^{At}

iv.) Find P such that $P^{-1}AP$ is in Jordan Form.

3.) Let

$$A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}.$$

i.) Find the characteristic polynomial of A.

ii.) Find the minimal polynomial of A.

iii.) Compute the matrix square root of A i.e. find S such that $S^2 = A$.

4.) Let $T^2 = I$ is called a reflection.

i.) Find an example of a 2×2 reflection.

ii.) Find the eigenvalues of a reflection.

iii.) Prove that a reflection is diagonalizable.

5.) A matrix A has Jordan form

$$J = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

then $J = 2I + N$

i.) Show that $2I = p(J)$ and $N = q(J)$, where p and q are the polynomials:

$p(z) = (z^3 - 6z^2 + 12z)/4$ and $q(z) = z - p(z)$ $Hint : (A - 2I)^3 = 0$

6.) Do exercise 16,17 and 19, p. 96
7.) For each of the following matrices find the characteristic polynomial and the minimal polynomial.

i.)

\[A = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix} \]

ii.)

\[A = \begin{pmatrix} 5 & 0 & 0 & 0 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 0 & 7 \end{pmatrix} \]

iii.)

\[A = \begin{pmatrix} 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 4 \end{pmatrix} \]

8.) Find the Jordan form for the following: (Hint: easy primary works)

i.)

\[A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & -4 & 0 \end{pmatrix} \]