1.) Let $S, T \in \Omega(\mathbb{R}^n)$ be the operators defined by $S(x_1, x_2, \ldots, x_n) = (0, x_1, \ldots, x_{n-1})$, $T(x_1, x_2, \ldots, x_n) = (x_2, \ldots, x_n, 0)$
Find a bases $E = \{e_1, e_2, \ldots, e_n\}$ and $F = \{f_1, f_2, \ldots, f_n\}$ such that $[S]_E = [T]_F$

2.) Let $T \in \Omega(\mathbb{R}^n)$ with minimum polynomial $m(\lambda)$ that has linear factors. Prove that T is diagonalizable.

3.) Let $T \in \Omega(\mathbb{R}^n)$ and define $U = \ker(T^i)$ and $W = \ker(T^{i+1})$. Then
 a.) $U \subseteq W$
 b.) $T(W) \subseteq U$

4.) Let $T \in \Omega(\mathbb{R}^n)$ be the operator defined by:
 $T(x_1, x_2, \ldots, x_n) = (s, s, \ldots, s)$ where $s = \Sigma x_i$
 a.) Find a matrix which represents T
 b.) Find the characteristic polynomial of T.
 c.) Find the minimal polynomial of T.
 d.) Find the Jordan Form for T.

5.) Let $S, T : \mathbb{C}^3 \rightarrow \mathbb{C}^3$ be given by:
 $S(x, y, z) = (2x + y, 2y + z, 2z)$ $T(x, y, z) = (2x + y, 2y, 2z)$
 a.) Find a matrix which represents S, T
 b.) Find the eigenvalues of S, T.
 c.) Find the characteristic polynomial of S, T.
 d.) Find the minimal polynomial of S, T.
 e.) Find the Jordan Form of S, T.

6.) Give examples of operators on \mathbb{C}^4
 a.) whose minimal polynomial is $\lambda(\lambda - 1)^2$.
 b.) whose minimal polynomial is equal to it's characteristic polynomial is equal to $\lambda(\lambda - 1)^2(\lambda - 3)$.
 c.) whose minimal polynomial is $\lambda(\lambda-1)(\lambda-3)$ and characteristic polynomial is $\lambda(\lambda-1)^2(\lambda-3)$