Penrose Equations

Let A be an $n \times m$ matrix, A^* denote the conjugate transpose of A. Then there exists a unique $m \times n$ matrix X satisfying the following 4 Penrose equations:

1.) $AXA = A$
2.) $XAX = X$
3.) $(AX)^* = AX$
4.) $(XA)^* =XA$

X is called the Moore–Penrose inverse of A and is denoted by A^\dagger.

Exercise (1.) If A is an $n \times n$ non-singular matrix then $A^\dagger = A^{-1}$.

Exercise (2.) A^\dagger is unique.