I. Basic Definitions, concepts

7.) prove triangle inequality.
3) determination of a subspace.
4) orthogonal vectors.
5) Determination of a span of vectors.

1.) Properties of Inverses.
4) connection between the inverse of a matrix and uniqueness of solution.
5) properties of dot real/complex product.
7) prove that the span is a subspace.

1. b. Is the set \(S = \{(1,0,1,0),(0,1,-1,2),(0,2,2,1),(1,0,0,1)\} \) a basis for \(\mathbb{R}^4 \)

2. a. To find a basis for \(\mathbb{R}^3 \) that includes the vectors \(\{(1,0,2),(0,1,3)\} \) one does the following: Explain.

b. Write each of \(e_1, e_2, e_3 \) in terms of this basis.

3.) Prove that the coordinates of a vector \(x \) with respect to a basis in \(\mathbb{R}^3 \) are unique.

4.) Find a basis for the homogenous system \((\lambda I - A)x = 0 \) where \(\lambda = 1 \) and

\[
A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 3 \end{pmatrix}.
\]

Hint:

\[
\text{rref} \begin{pmatrix} 1 & -1 & 2 \\ 1 & 0 & -1 \\ 0 & -1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -3 \end{pmatrix}.
\]

5. Let \(S = \{x_1, x_2, x_3\} \) where \(x_1 = (1,0,2), x_2 = (-2,0,1), \) and \(x_3 = (0,\frac{1}{2},0) \).

a. Prove that \(S \) is an orthogonal basis.

b. Make \(S \) into an orthonormal basis.

c. Express \(x = (3,4,5) \) in terms of the orthonormal basis.

6.) Let \(S = \{(1,1),(2,3)\} \) and \(x = (1,5) \).

a. Prove that \(S \) is a basis.

b. Express the elements of \(S \) in terms of the natural basis \(\{e_1, e_2\} \).

c. Express the elements of the natural basis in terms of the \(S \) basis.

d. Relate c. to b.
e. compute the coefficients of \(x \) with respect to the \(S \) basis.

9.) construct an orthonormal basis from for the subspace spanned by \((1, 1, 1), (0, 0, 1), (1, 2, 3)\).

1.) Let \(S = \{x_1, x_2, x_3, x_4\} \) be a set of nonzero vectors in \(\mathbb{R}^4 \). If \(x_4 \) is a linear combination of \(x_1, x_2, x_3 \) then prove that \(S \) is linearly dependent.

6.) Let \(A \) be any \(n \times n \) matrix whose columns are linearly independent. Prove that \(Ax = 0 \) has a unique solution.

7.) Prove that the coordinates of a vector \(x \) with respect to a basis in \(\mathbb{R}^4 \) are unique.

8.) Find a basis for the homogenous system \((\lambda I - A)x = 0\) where \(\lambda = 2 \) and

\[
A = \begin{pmatrix}
1 & 1 & -2 \\
-1 & 2 & 1 \\
0 & 1 & -1
\end{pmatrix}.
\]

Hint: rref
\[
\begin{pmatrix}
1 & -1 & 2 \\
-1 & 1 & -1 \\
0 & -1 & 3
\end{pmatrix}.
\]

= \[
\begin{pmatrix}
1 & 0 & -1 \\
-1 & 1 & -3 \\
0 & 0 & 0
\end{pmatrix}.
\]

8.) Let \(S = \{x_1, x_2, x_3\} \) where \(x_1 = \left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right), \) \(x_2 = \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right), \) and \(x_3 = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right). \)

a. Prove that \(S \) is an orthonormal set.

b. Express \(x = (3, 4, 5) \) in terms of the \(S \) basis.

In \(\mathbb{R}^3 \) let \(V = \{v_1, v_2, v_3\} \) where

\[v_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \]

, \[v_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \]

, and

\[v_3 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \]

. Find the transition matrix from the \(N \)–basis to the \(V \)–basis.

In \(\mathbb{R}^3 \) let \(W = \{w_1, w_2, w_3\} \) where

\[w_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \]
\[w_2 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \]

, and

\[v_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \]

a. Write each of the \(\{v_1, v_2, v_3\} \) in terms of the:
 a. Natural basis.
 b. The \(W \) basis.
 c. The \(V \) basis.

b. Write each of the \(\{w_1, w_2, w_3\} \) in terms of the:
 a. Natural basis.
 b. The \(W \) basis.
 c. The \(V \) basis.

c. Find the transition matrix from the \(W \)–basis to the \(V \)–basis. Illustrate its effect.

d. Find the transition matrix from the \(V \)–basis to the \(W \)–basis. Illustrate its effect.

II. Diagonalization and Jordan Form

1. State and prove necessary and sufficient conditions for Diagonalization. Given a

\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]

matrix find its Diagonal Form and the \(P \) which places into that form.

2.) Show that the following matrix is not diagonalizable

\[
A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
\]

3.) define and prove properties of the minimal poly and characteristic poly.

4.) Given a 3x3 matrix find its Jordan Form and the \(P \) which places into that form.

5.) For \(W \) a subspace find \(W^\perp \) and prove that it is a subspace and that \(V \) can be written as a direct sum.

6.) Relation between \(N(A) \) and ...

III. Homework